(fora do parenteses /\ é elevado a -4)
a) 1/4
b) 3^-24 . 2^-6
c) 1/3^48 . 2^8 (obs.: o 3^48 e o 2^8 em baixo do 1)
d) 1/54¹º
e) 54^-28
Para realizar o cadastro, você pode preencher o formulário ou optar por uma das opções de acesso rápido disponíveis.
Por favor, insira suas informações de acesso para entrar ou escolha uma das opções de acesso rápido disponíveis.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
A = 0
A= [(6^2)*(9^5)]^9-4) = [(2^2*3^2*(3^2)^5]^(-4) = [(2^2)*(3^12)]^(-4) = [2^(-8)*3^(-48)] = 1/[(2^8)*(3^48)] .:.
.:.
Letra c
Poxa.. Suei pra fazer essa 😀
Seguinte
(6².9^5)^-4 = A
(36 x 59049)^-4 = A
36 é a mesma coisa que = 3³ . 2²
e
59049 é a mesma cosia que = 3^10
Então fica assim:
(3^3 x 2^2 x 3^10)^-4
ou
(3^13 x 2^2)^-4
Quando fica elevado a negativo é o mesmo que um sobre o valor positivo
ou seja
1/{(3^13 x 2^2 )^4
1/{3^48 x 2^8)
Resposta certa é letra C!
huhuuuu
Vamos lá.
Pergunta-se quanto é “A”, sabendo-se que:
A = [6² * 9^(5)]^(-4)
A = 1/[6² * 9^(5)]^(4)
A = 1/[6²]^(4) * [9^(5)]^(4)
A = 1/6^(2*4) * 9^(5*4)
A = 1/6^(8) * 9²º ——-veja que 6 = 2*3 e 9 = 3². Assim:
A = 1/(2.3)^(8) * (3²)²º
A = 1/2^(8)*3^(8) * 3^(²*²º)
A = 1/2^(8)*3^(8) * 3^(40)
A = 2^(8)*3^(8+40)
A = 2^(8) * 3^(48) <-----Pronto. Essa é a resposta. Opção "c".OK? Adjemir.